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Abstract 
In this study, the transverse permeability of fibrous 
porous media is studied both experimentally and 
theoretically. A scale analysis technique is employed for 
determining the transverse permeability of fibrous media 
with a variety of fibrous matrices including square, 
staggered, hexagonal unidirectional fiber arrangements, 
simple two directional mats, and simple cubic structures. 
In this approach, the permeability is related to the 
porosity, fiber diameter, and tortuosity of the medium. In 
addition, the pressure drop in several samples of tube 
banks of different arrangements and metal foams are 
measured in the creeping flow regime. The results are 
then used to calculate the permeability of the samples. 
The developed compact relationships are successfully 
verified through comparison with the present 
experimental results and the data reported by others. Our 
results suggest that the fiber orientation has an important 
effect on the permeability; however, these effects are 
more pronounced in low porosities, i.e., ε  < 0.7.  
Keywords: Transverse permeability; Scale analysis; 
Fibrous media; Modeling; Creeping flow; Experimental 
 
1. Introduction 
Study of flow in fibrous porous media is important in 
many natural and industrial processes such as: 
physiological transport phenomena [1], filtration [2-4], 
composite fabrication [5,6], compact heat exchangers 
[7,8], paper production [9], and fuel cell technology [10, 
11]. As such, prediction of the flow properties of fibrous 
materials including permeability and inertial coefficient 
has drawn the attention of numerous researchers. 
Authors have employed various theoretical and 
experimental techniques to investigate the problem. 
Comprehensive reviews of the pertinent literature can be 
found in Refs. [4,6,12]. Permeability, which can be 
interpreted as the flow conductance of the solid matrix, is 
related to geometrical features of the solid matrix 
including particle size and shape, pore size, and pore 
distribution.  
Fibrous materials can be divided into 1, 2, and 3 
directional media. In one-directional (1D) structures the 
axes of fibers are parallel to each other. In two-
directional (2D) fibrous matrices the fibers axes are 
located on planes parallel to each other with random 

positions and orientations on these planes. The axes of 
fibers in three-directional (3D) are randomly positioned 
and oriented in space. Unlike the previous 
configurations, 3D structures can be isotropic. 
Complex geometry of actual fibrous materials avoid 
from exact solutions for flow and permeability. 
However, in preliminary design and optimization 
processes, approximate solutions often suffice. To 
estimate the permeability of the fibrous structures, 
several researchers have modeled the complex micro-
structure of the porous media with simplified 1D “unit 
cells” [13-21]. The models developed theoretically for 
transverse permeability of 1D structures are plotted 
against experimental data in Fig. 1. The comparison 
shows that most of these models have a limited range of 
accuracy. Only, the model of Tamayol and Bahrami [19] 
captures the trends of experimental data over the entire 
range of porosity. However, the model of Tamayol and 
Bahrami [19] is limited to square arrays of fibers. 
Theoretical studies of permeability of 2D and 3D 
materials are not as frequent as 1D arrangements which 
is a result of geometrical complexity of these media. A 
selection of the existing models for 2D and 3D structures 
[2, 22-24] are plotted in Figs. 2 and 3, respectively. It can 
be seen that these models are not accurate over the entire 
range of porosity. 
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Figure 1: Comparison of the existing models for square 

arrangements with experimental data. 
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Figure 2: Comparison of the existing models for 2D 

structures with experimental data. 
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Figure 3: Comparison of the existing models for 3D 

structures with experimental data. 
Therefore, the objectives of the present work are to: 

• Develop a theoretical approach that is 
applicable to 1D, 2D, and 3D fibrous 
matrices and accurately captures the trends 
observed in experimental data. 

• Investigate the effect of relevant geometrical 
parameters involved and identify the 
controlling parameters. 

• Perform independent experimental studies 
on fibrous structures to verify the developed 
models. 

A scale analysis technique is employed to predict the 
permeability of a variety of unit cells including square, 
staggered, and hexagonal arrangements of 1D fibers, 
simple 2D mats and simple cubic structures. This method 
that was originally applied by Clauge et al. [25] to 
fibrous media, is modified to improve its accuracy. 
Moreover, compact relationships are presented for 
determining the permeability of each category as a 
function of porosity and fiber diameter. In addition, 
pressure drop is measured for creeping flow through 
several samples of tube banks and aluminum foams with 
1D and 3D structures, respectively. The developed 
solutions are successfully compared with experimental 
and numerical results for a wide range of geometries and 
materials. 
2. Geometrical modeling 
Depending on the orientation of fibers in the medium, 
the fibrous matrix could be divided into 1D, 2D, or 3D 
structures. The simplest representation of 1D structures 
or generally fibrous media is ordered arrangements of 
unidirectional cylinders. In the present study, several 
ordered structures including square, staggered, and 
hexagonal arrays of fibers are considered, see Fig. 4. The 
solid volume fractions, ϕ , for the arrangements shown 
in Fig. 4 are related to the distance between the centers 
of adjacent fibers, S , and the fibers diameter, d : 
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To obtain results for woven textile structures with non-
overlapping fibers, the structure, shown in Fig. 5, is 
considered here. The relationship between ϕ  and other 
geometrical parameters can be found from Fig. 5: 

S
d

4
πϕ =  (2) 

 

 
Figure 4: Considered unit cells for ordered 1D structures: a) square, b) staggered, and c) hexagonal arrays of cylinders. 
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Figure 5: The 2D unit cell considered in the present 

study. 
In 3D structures such as metal foams, fibers can have any 
arbitrary orientation in space, see Fig. 6a. Many 
researchers have proposed simple cubic arrangements as 
the representing unit cell for these structures, see in Fig. 
6b. The relationship between the solid volume fraction 
and other geometric parameters of SC arrangement 
considered in the present study is [26]: 
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3. Experimental approach 
Experimental data for creeping flow through fibrous 
structures of our interests are not abundant in the open 
literature. As such, several samples of tube banks with 
square and staggered fiber arrangements and metal foams 
are tested using glycerol. The properties of the sample 
are summarized in Table 1. 
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Figure 6: 3D structures; a) metal foam, b) simple cubic 

arrangement. 
The gravity driven test bed, illustrated in Fig. 7, is 
consisted of an elevated reservoir, an entry section, 
sample holder, and an exit section with a ball valve. The 
reservoir cross-section of 300X300 mm2 is large enough 
to ensure that the variation of the driving pressure is 
negligible during the experiment. The pressure drop 
through the samples was measured using a differential 
pressure transducer (PX 154) provided by BEC Controls. 

The bulk flow was calculated by weighting the collected 
test fluid over a specific period of time.  
The permeability of the samples is then calculated using 
Darcy equation described in the following section. 
Figure 8 shows that the measured pressure gradients for 
samples of tube bank with square fiber arrangement have 
linear relationships with the Reynolds number. 
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Figure 7: Schematic of the test setup. 

 
The permeability of the samples is then calculated using 
Darcy equation described in the following section. 
Figure 8 shows that the measured pressure gradients for 
samples of tube bank with square fiber arrangement have 
linear relationships with the Reynolds number. 
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Figure 8: measured pressure gradients for samples of 

tube bank with square fiber arrangement. 
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Table 1: Summary of the properties of the tested samples; glycerol used as test fluid. 

Sample type ε  d  ( mm ) Orientation 
Permeability 

( 2,mK ) 
Tube bank (square) 0.8 1.5 1D 1.38×10-7 

Tube bank (square) 0.85 1.5 1D 3.74×10-7 
Tube bank (square) 0.9 1.5 1D 5.44×10-7 

Tube bank (staggered) 0.7 1.5 1D 1.00×10-7 

Tube bank (staggered) 0.9 1.5 1D 7.75×10-7 
Metalfoam (PPI=10) 0.93 0.4 3D 2.53×10-7 
Metalfoam (PPI=20) 0.93 0.3 3D 1.45×10-7 
Metalfoam (PPI=40) 0.94 0.2 3D 0.81×10-7 

 
4. Model development 
Experimental observations have shown that a linear 
relationship exists between the volume-averaged 
superficial fluid velocity, DU , and the pressure gradient; 
this is called Darcy’s law [4]:  

DU
Kdx

dP μ
=−  (4) 

where, μ  is the fluid viscosity and K  is the 
permeability of the medium. Darcy’s relationship is 
empirical, convenient, and widely accepted; this equation 
holds when flow is in creeping regime [5]. However, one 
should know the permeability beforehand to use the 
Darcy’s equation. Permeability can be calculated through 
the pore-scale analysis of flow in the solid matrix. In the 
creeping regime, the pore-scale velocity, V

r
, is governed 

by Stokes equation: 
0. =∇V

r
 (5) 

PV −∇=∇
r2μ (6) 

A scale analysis is followed for determining the resulting 
pressure drop. In this approach the scale or the range of 
variation of the parameters is substituted in governing 
equations, i.e., derivatives are approximated with 
differences [27]. Following Clauge et al. [25] and Sobera 
and Kleijn [28], half of the minimum opening between 
two adjacent cylinders, minδ , is selected as the 
characteristic length scale over which rapid changes of 
the velocity occurs, see Fig. 4.  
Sobera and Klein [28] proposed to use the average 
velocity in the section with minimum frontal area as the 
characteristic velocity scale. However, this assumption is 
only accurate for highly porous structures, ε > 0.8, and 
overpredicts the pressure drop in low porosities [28]. 
Carman [29] argued that a fluid particle should travel in 
a tortuous path of length eL  to path through a sample of 
size L . Therefore, it is expected that the resulting 
velocity scale from applying a constant pressure 
difference to be inversely related to LLe / ; this ratio is 
called tortuosity factor, τ . Thus, the pore-level velocity 
scale becomes: 

τ
βDUV ≈

r
 (7) 

where β  is the ratio of the minimum to the total frontal 
areas in the unit cell.  
Substituting from Eq. (7) for velocity scale and using 

minδ  as the length scale, permeability can be calculated 
as: 

τδβ 2
minCK =  (8) 

where C  is a constant that should be determined through 
comparison with data. Therefore one needs to know the 
ratio between minimum to total frontal area, β , and 
tortuosity factor, τ , to be able to calculate the 
permeability. 
4.1. Tortuosity factor 
The tortuosity factor is defined as the ratio of the average 
distance, eL , that a particle should travel to cover a 
direct distance of L . Due to its importance in mass, 
thermal and electrical diffusion, several theoretical and 
empirical relationship have been proposed for tortuosity 
calculation in the literature; good reviews can be found 
elsewhere [30,31]. Any relationship proposed for 
tortuosity should satisfy three conditions [30]: τ >1; 

=→ τε 1lim 1; ∞→→ τε 0lim . One of the most popular 
empirical models for determination of tortuosity, that 
satisfies all these conditions, is the Archie’s law [32]: 

αα
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 (9) 

where α  is a constant and ε  is the porosity. Boudreau 
[30] showed that α  = 0.5 provides a good estimate for 
tortuosity in packed beds. Due to similarity of flow in 
packed beds and flow in 1D and 2D fibers α  is assumed 
to be equal to 0.5. The study of Tomadakis and 
Robertson [12] showed that 3D fibrous structures are less 
tortuous in comparison with 1D and 2D matrices. 
Therefore for 3D structures α  is assumed to be equal to 
0.3. 
5. Results and discussions 
Equation (8) relates the permeability of fibrous media to 
the minimum opening between adjacent fibers, minδ , the 
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ratio between minimum to total frontal area, β , and 
tortuosity factor, τ , that can be calculated from Eq. (9). 
In the following subsections, using geometrical 
properties of the considered microstructures, compact 
models will be developed that relate the permeability to 
the solid volume fraction. 
5.1. Unidirectional arrangements 
For the three different ordered 1D unit cells shown in 
Fig.1, it can be seen that SdS /)( −=β  and 

)(min dS −=δ . Therefore, Eq. (8) can be rewritten as: 

( )
ϕ−

−
=

1

3

S
dSCK  (10) 

Substituting from Eq. (1) and comparing the model with 
experimental data, the dimensionless permeability of the 
ordered structures is: 
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(11) 

In Fig. 9, Eq. (11) is compared with the present 
experimental results and the data collected by others [33-
39]. As one can see, the model is in agreement with 
experimental data over the entire range of porosity. 
These experiments were conducted using different fluids 
including: air, water, oil, and glycerol with a variety of 
porous materials such as metallic rods, acrylic cylinders, 
and carbon fibers.  
In Fig. 10 the predicted results of Eq. (11) for staggered 
arrangement of fibers are compared with present 
experimental data and numerical results of Higdon and 
Ford [26]. It can be seen that the proposed model can 
accurately predict the numerical results in the entire 
range of porosity. 
5.2. Two-directional structures 
The ratio of the minimum frontal to the total unit cell 
areas for the 2D structure shown in Fig. 2b is not exactly 
known. Therefore, similar to 1D structures and using the 
Forchheimer law that relates average pore-scale velocity 
to ε/DU  [5], the pore-level velocity scale is estimated 
as:  

2/3εS
dSUV D

−
≈

r
 (12) 
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Figure 9: Comparison of the proposed model for square 

arrangements with experimental data. 
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Figure 10: Comparison of the proposed model with 

numerical results of Higdon and Ford [26] for staggered 
arrangements. 

Substituting for geometrical parameters from Eq. (2), the 
dimensionless permeability becomes: 
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The constant value in Eq. (13), i.e., 0.008, is found 
through comparison with experimental data collected 
from different sources, see Fig. 11. It can be seen that 
Eq. (13) captures the trends of the experimental data 
collected from different sources over a wide range of 
porosity. The experiments were conducted on glass rods, 
glass wool, cotton wool, kapok with application in 
filtration [40], alloy fibers [41], fiber reinforcing mats 
with application in molding and composite fabrication 
[42,43], and gas diffusion layers [10]. Kostornov and 
shevchuk [41] performed experiments with several fluids 
and they observed that permeability was dependent on 
the working fluid, i.e., water resulted in higher 
permeability than alcohol.  
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Figure 11: Comparison of the present model with 

experimental data for 2D structures. 
 

5.3. Three directional arrangements  
For simple cubic arrangement that is considered in this 
study as a simple representation of 3D fibrous materials, 
the ratio of the minimum frontal to the unit cell areas is 

22 /)( SdS −=β . Therefore, the permeability of 3D 
structures becomes: 

( )
3.022

4

2 08.0
εdS

dS

d

K −
=  (14) 

where the ratio of S  to d  is calculated from Eq. (3). 
The constant in Eq. (14) is found to be 0.08 through 
comparison of this equation with the numerical data 
reported by Higdon and Ford [26] for SC arrangements 
over a wide range of porosity. Figure 12 includes the 
present model, current experimental measurements, and 
experimental data collected from different sources. The 
plotted data are based on permeability results for 
polymer chain in solutions [44], glass wool randomly 
packed, stainless steel crimps [29], metallic fibers [45], 
and aluminum metal foams [46]. It can be seen that the 
present model is in agreement with the numerical results 
over the entire range of porosity. 
6. Effect of fiber orientation of the permeability 
To see the effect of fibers arrangement on the 
permeability of the fibrous structures, the proposed 
relationships for 1D, 2D, and 3D arrays are plotted in 
Fig. 13. It can be seen that the square arrangements and 
2D structures have similar permeabilities and 3D 
structures is the most permeable microstructure; this is in 
agreement with the results reported by Tomadakis and 
Robertson [12]. It is noteworthy that the effect of 
microstructure is more significant in low porosities, 
where ε  < 0.7 and the deviations are reduced in higher 
porosities; this is in line with our previous observations 
for parallel flow through 1D fibers [47]. 
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Figure 12: Comparison of the proposed model for SC, 
experimental data. 

ε

K
/d

2

0.5 0.6 0.7 0.8 0.9
10-3

10-2

10-1

100
1D square arrangement
1D staggered arrangement
2D strucutres
3D strucutres

 
Figure 13: Effect of fiber orientation on the permeability 

of fibrous structures. 
7. Conclusions 
Scale analysis technique was employed for analyzing 
pressure drop and permeability of fibrous media. The 
fibrous materials were represented by unit cells which 
were assumed to be repeated throughout the medium and 
the present approach was applied to a variety of fibrous 
matrices including square, staggered, hexagonal 
unidirectional fiber arrangements, simple 2 directional 
mats, and simple cubic structures. Moreover, compact 
relationships have been reported for the considered 
geometries. In addition, pressure drop in samples of tube 
banks of different arrangements and metal foam were 
measured in the creeping flow regime. The developed 
compact relationships were successfully verified through 
comparison with experimental and numerical data, over a 
wide range of porosity. The results show that the micro-
structure effects were more significant for low porosities. 
Moreover, 3D structures had the highest permeability. 
Since the present model relates permeability to the 
tortuosity, fiber size and distribution, it is capable to be 
extended to include randomness effects. 



7 
 

8. Acknowledgements 
The authors gratefully acknowledge the financial support 
of the Natural Sciences and Engineering Research 
Council of Canada (NSERC). 
9. References 
[1] G.A. Truskey, F. Yuan, D.E. Katz, 2004 “Transport 

phenomena in biological systems,” Pearson 
Prentience Hall, New Jerseys. 

[2] L. Spielman, S.L. Goren, 1968, “Model for 
predicting pressure drop and filtration efficiency in 
fibrous media,” Current Research, Vol. 2, pp. 279-
287. 

[3] F.A.L. Dullien, 1992, “Porous media: fluid transport 
and pore structure,” Academic Press. 

[4] M. Kaviany, 1992, “Principles of heat transfer in 
porous media,” Springer-Verlag, New York. 

[5] M.A. Choi, M.H. Lee, J. Chang, S.J. Lee, 1999, “ 
Permeability modeling of fibrous media in 
composite processing,” Journal of Non-Newtonian 
Fluid Mechanics, Vol. 79, pp. 585-598. 

[6] B.T. Astrom, R.B. Pipes, S.G. Advani, 1992, “On 
flow through aligned fiber beds and its application to 
composite processing,” Journal of Composite 
Materials, Vol. 26 (9), pp. 1351-1373. 

[7] L. Tadrist, M. Miscevic, O. Rahli, F. Topin, 2004, 
“About the use of fibrous materials in compact heat 
exchangers,” Experimental Thermal and Fluid 
Science, Vol. 28, pp. 193–199. 

[8] S. Mahjoob, K. Vafai, 2008, “A Synthesis of Fluid 
and Thermal Transport Models for Metal Foam Heat 
Exchangers,” International Journal of Heat and Mass 
Transfer, Vol. 51, pp. 3701–3711. 

[9] C. Antoine, P. Nygard, Ø.W. Gregersen, R. 
Holmstad, T. Weitkamp, C. Rau, 2002, “3D images 
of paper obtained by phase-contrast X-ray 
microtomography: image quality and binarisation,” 
Nuclear Instruments and Methods in Physics 
Research A Vol. 490, pp. 392–402. 

[10] J.P. Feser, A.K. Prasad, S.G. Advani, 2006, 
“Experimental characterization of in-plane 
permeability of gas diffusion layers,” Journal of 
Power Sources, Vol. 162, pp. 1226.1231. 

[11] J.T. Gostick, M.W. Fowler, M.D. Pritzker, M.A. 
Ioannidis, L.M. Behra, 2006, “In-plane and through-
plane gas permeability of carbon fiber electrode 
backing layers,” Journal of Power Sources, Vol. 
162, pp. 228-238. 

[12] M.M. Tomadakis, T. Robertson, 2005, “Viscous 
permeability of random fiber structures: comparison 
of electrical and diffusion estimates with 
experimental and analytical results,” Journal of 
Composite Materials, Vol. 39, pp. 163-188.  

[13] J. Happel, 1959, “Viscous flow relative to arrays of 
cylinders,” AICHE, Vol. 5, pp. 174–177. 

[14] S. Kuwabara, 1959, “The forces experienced by 
randomly distributed parallel circular cylinders or 
spheres in a viscous flow at small Reynolds 
numbers,” Journal of Physical Society of Japan, Vol. 

14, pp. 527-532. 
[15] H. Hasimoto, 1959, “On the periodic fundamental 

solutions of the stokes equations and their 
application to viscous flow past a cubic array of 
spheres,” Journal of Fluid Mechanics, Vol. 5, 
pp.317–328. 

[16] A.S. Sangani, A. Acrivos, 1982, “Slow flow past 
periodic arrays of cylinders with application to heat 
transfer,” International Journal of Multiphase Flow, 
Vol. 8, pp.193–206. 

[17] J.E. Drummond, M.I. Tahir, 1984, “Laminar viscous 
flow through regular arrays of parallel solid 
cylinders,” International Journal of Multiphase 
Flow, Vol. 10, pp. 515-540.  

[18] J. Vander Westhuizen, J.P. Du Plessis, 1996, “An 
attempt to quantify fiber bed permeability utilizing 
the phase average Navier-Stokes equation,” 
Composites, Part A, Vol. 27, pp. 263–269. 

[19] A. Tamayol, and M. Bahrami, 2009, “Analytical 
determination of viscous permeability of fibrous 
porous media,” International Journal of Heat and 
Mass Transfer, Vol. 52, pp. 3691-3701. 

[20] M. Sahraoui, M. Kaviany, 1994, “Slip and no-slip 
boundary condition at interface of porous, plain 
media,” International Journal of Heat and Mass 
Transfer, Vol. 37, pp. 1029–1044. 

[21]  B.R. Gebart, 1992, “Permeability of Unidirectional 
Reinforcements for RTM,” Journal of Composite 
Materials, Vol. 26, pp. 1100-1133. 

[22] M.M. Tomadakis, S.V. Sotirchos, 1993, “Transport 
properties of random arrays of freely overlapping 
cylinders with various orientation distributions,” 
Journal of Chemical Physics, Vol. 98, pp. 616–626. 

[23] M.A. Van Doormaal, J.G. Pharoah, 2009, 
“Determination of permeability in fibrous porous 
media using the lattice Boltzmann method with 
application to PEM fuel cells,” International Journal 
of Numerical Methods for Fluids, Vol 59, pp. 75–89. 

[24] G.W. Jackson, D.F. James, 1986, “The permeability 
of fibrous porous media,” Canadian Journal of 
Chemical Engineering, Vol. 64, pp. 364–374.  

[25] D.S. Clauge, B.D. Kandhai, R. Zhang, and P.M.A. 
Sloot, 2000, “Hydraulic permeability of 
(un)bounded fibrous media using the lattice 
Boltzmann method,” Physical Review E, Vol. 61, 
pp. 616-625. 

[26] J.J.L. Higdon, G.D. Ford, 1996, Permeability of 
three-dimensional models of fibrous porous media, 
Journal of Fluid Mechanics, Vol. 308, pp. 341-361. 

[27] F.M. White, 1984, “Viscous fluid flow,” McGraw-
Hill, New York. 

[28] M.P. Sobera, and C.R. Kleijn, 2006, “Hydraulic 
permeability of ordered and disordered single-layer 
arrays of cylinders,” Physical Review E, Vol. 74, pp. 
036302-1-10. 

[29] P.C. Carman, 1937, “The determination of the 
specific surface of powders,” Journal of the Society 
of Chemical Industry, Vol. 57, pp. 225-234. 



8 
 

[30] B.P. Boucreau, 1996, “The diffusive tortuosity of 
fine-grained unlithified sediments,” Geometrica et 
Cosmochimica Acta, Vol. 60, pp. 3139-3142. 

[31] L. Shen, Z. Chen, 2007, “Critical review of the 
impact of tortuosity on diffusion,” Chemical 
Engineering Science, Vol. 62, pp. 3748-3755.  

[32] G. Archie, 1942, “The electrical resistivity log as an 
aid in determining some reservoir characteristics,” 
Transactions of AIME, Vol. 146, pp. 54-62 

[33] O.P. Bergelin, G.A. Brown, H.L. Hull, F.W. 
Sullivan, 1950, “Heat transfer and fluid friction 
during viscous flow across banks of tubes: III – a 
study of tube spacing and tube size,” ASME 
Transactions; Vol. 72, pp. 881–888. 

[34] A.A. Kirsch, N.A. Fuchs, 1967, “Studies on fibrous 
aerosol filters: II- pressure drops in systems of 
parallel cylinders,” Annals of Occupational 
Hygiene, Vol. 10, pp. 23–30. 

[35] T.A.K. Sadiq, S.G. Advani, R.S. Parnas, 1995, 
“Experimental investigation of transverse flow 
through aligned cylinders,” International Journal of 
Multiphase Flow, Vol. 21, pp. 755–774. 

[36] B. Khomami, L.D. Moreno, 1997, “Stability of 
viscoelastic flow around periodic arrays of 
cylinders,” Rheologica Acta, Vol. 36, pp. 367–383. 

[37] L. Skartsis, B. Khomami, J.L. Kardos, 1992, “Resin 
flow through fiber beds during composite 
manufacturing processes, part II: numerical and 
experimental studies of Newtonian flow through 
ideal and actual fiber beds,” Polymer Engineering 
and Sciences, Vol. 32, pp. 231-239. 

[38] W.H. Zhong, I.G. Currie, D.F. James, 2006, 
“Creeping flow through a model fibrous porous 
medium,” Experiments in Fluids, Vol. 40, pp. 119-
126. 

[39] C. Chmielewski, K. Jayaramana, 1992, “The effect 
of polymer extensibility on crossflow of polymer 
solutions through cylinder arrays,” Journal of 
Rheology, Vol. 36, pp. 1105-1126. 

[40] C.N. Davies, 1952, “The Separation of Airborne 
Dust and Particles”, Proceedings of, Institute of 
Mechanical Engineers, London B1, pp. 185-213. 

[41] A.G. Kostornov, M.S. Shevchuk, 1977, “Hydraulic 
characteristics and structure of porous metal fiber 
materials, laws of liquid permeability of materials”, 
Poroshkovaya Metallurgiya Vol. 9(177), pp. 50-56. 

[42] J.A. Molnar, L. Trevino, L.J. Lee, 1989, “Liquid 
flow in molds with perlocated fiber mats,” Polymer 
Composites, Vol. 10, pp. 414-423. 

[43] S. Zobel, B. Maze, H. Vahedi Tafreshi, Q. Wang, B. 
Pourdeyhimi, 2007, “Simulating permeability of 3-D 
calendered fibrous structures,” Chemical 
Engineering Science, Vol. 62, pp. 6285 – 6296. 

[44] D.F. James, G.W. Jackson, 1982, “The 
hydrodynamic resistance of hyaluronic acid and its 
contribution to tissue permeability”, Biorhelogy, 
Vol. 19, pp. 317-330. 

[45] O. Rahli, L. Tadrist, M. Miscevic, R. Santini, 1997, 
“Fluid flow through randomly packed monodisperse 
fibers: the Kozeny-Carman parameter analysis,” 
Journal of Fluids Engineering, Vol. 119.  

[46] A. Bhattacharya, V.V. Calmidi, R.L. Mahajan, 2002, 
“Thermophysical properties of high porosity metal 
foams,” International Journal of Heat and Mass 
Transfer, Vol. 45, pp. 1017-1031. 

[47] A. Tamayol, and M. Bahrami, 2009, “Parallel flow 
in ordered fibrous structures: an analytical 
approach,” ASME 2009 Fluids Engineering Division 
Summer Meeting, Vail, Colorado, USA. 

 


